Aeroballistic optimization of long-range guided ammunition

Author:

Bagy Simon,Libsig Michel,Martinez Bastien,Masse Baptiste

Abstract

Purpose This paper aims to describe the use of optimization approaches to increase the range of near-future howitzer ammunition. Design/methodology/approach The performance of a gliding projectile concept is assessed using an aeroballistic workflow, comprising aerodynamic characterization and flight trajectory computation. First, a single-objective optimization is run with genetic algorithms to find the maximal attainable range for this type of projectile. Then, a multi-objective formulation of the problem is proposed to consider the compromise between range and time of flight. Finally, the aerodynamic model used for the gliding ammunition is evaluated, in comparison with direct computational fluid dynamics (CFD) computations. Findings Applying single-objective range maximization results in a great improvement of the reachable distance of the projectile, at the expense of the flight duration. Therefore, a multi-objective optimization is implemented in a second time, to search sets of parameters resulting in an optimal compromise between fire range and flight time. The resulting Pareto front can be directly interpreted and has the advantage of being useful for tactical decisions. Research limitations/implications The main limitation of the work concerns the aerodynamic model of the gliding ammunition, which was initially proposed as an alternative to reduce significantly the computational cost of aerodynamic characterization and enable optimizations. When compared with direct CFD computations, this method appears to induce an overestimation of the range. This suggests future evolution to improve the accuracy of this approach. Originality/value To the best of the authors’ knowledge, this paper presents an original ammunition concept for howitzers, aiming at extending the range of fire by using lifting surfaces and guidance. In addition, optimization techniques are used to improve the range of such projectile configuration.

Publisher

Emerald

Subject

Mechanical Engineering,Aerospace Engineering,Computational Mechanics,Engineering (miscellaneous)

Reference23 articles.

1. Solid fuel ramjets for projectile propulsion-summing up of a joint FOA-TNO research project,2000

2. Arnoult, G. (2020), “Modélisation de la trajectoire d’un projectile gyrostabilisé muni d’un dispositif de contrôle”, PhD thesis, Université Paris-Saclay.

3. Control surface geometry surrogate-based optimization for spin-stabilized projectile course correction;AIAA Journal,2020

4. A python surrogate modeling framework with derivatives;Advances in Engineering Software,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3