Cauchy type nonlinear inverse problem in a two-layer area

Author:

Ciałkowski Michał,Olejnik Aleksander,Joachimiak Magda,Grysa Krzysztof,Frąckowiak Andrzej

Abstract

Purpose To reduce the heat load of a gas turbine blade, its surface is covered with an outer layer of ceramics with high thermal resistance. The purpose of this paper is the selection of ceramics with such a low heat conduction coefficient and thickness, so that the permissible metal temperature is not exceeded on the metal-ceramics interface due to the loss ofmechanical properties. Design/methodology/approach Therefore, for given temperature changes over time on the metal-ceramics interface, temperature changes over time on the inner side of the blade and the assumed initial temperature, the temperature change over time on the outer surface of the ceramics should be determined. The problem presented in this way is a Cauchy type problem. When analyzing the problem, it is taken into account that thermophysical properties of metal and ceramics may depend on temperature. Due to the thin layer of ceramics in relation to the wall thickness, the problem is considered in the area in the flat layer. Thus, a one-dimensional non-stationary heat flow is considered. Findings The range of stability of the Cauchy problem as a function of time step, thickness of ceramics and thermophysical properties of metal and ceramics are examined. The numerical computations also involved the influence of disturbances in the temperature on metal-ceramics interface on the solution to the inverse problem. Practical implications The computational model can be used to analyze the heat flow in gas turbine blades with thermal barrier. Originality/value A number of inverse problems of the type considered in the paper are presented in the literature. Inverse problems, especially those Cauchy-type, are ill-conditioned numerically, which means that a small change in the inputs may result in significant errors of the solution. In such a case, regularization of the inverse problem is needed. However, the Cauchy problem presented in the paper does not require regularization.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3