Three-dimensional simulation effects of trailing-edge actuation on a morphing A320 wing by means of hybrid turbulence modelling

Author:

Marouf Abderahmane,Hoarau Yannick,Rouchon Jean-François,Braza Marianna

Abstract

Purpose This study aims to investigate the effects of electroactive morphing on the Airbus A320 Reduced Scale prototype of the H2020 N° 723402 European Research project smart morphing and sensing (SMS) for aeronautical configurations [1],[2]. Design/methodology/approach The flow regimes correspond to low subsonic take-off conditions. The morphing is applied through the vibration and slight deformation of the near trailing edge region; respecting the way, this actuation has been applied on the experimental prototype using micro fibre composite actuators. Optimal frequency range has been used, associated with low amplitudes of deformation with the Arbitrary Lagrangian Eulerian methodology. This study used an adapted turbulence modelling with the organised eddy simulation (OES) as well as a hybrid approach delayed detached eddy simulation – with embedded OES (DDES–OES), able to sensitise and keep up the coherent structures development. Findings The morphing at an optimal frequency (300 Hz) and amplitude (0.7 mm), applied on a length (3.5 cm) near the trailing edge, has been studied at Reynolds number 1 million and incidence of 10°. The effects on the main flow instabilities and on the turbulent vortex structures are analysed using proper orthogonal decomposition. A modification of the wake structures and a formation of organised rows of vortices along the shear layer are obtained. This leads to a quasi-two-dimensional wake, benefits on the aerodynamic performance and a decrease of the frequency peaks in the spectrum, corresponding to an attenuation of the coherent structures. Originality/value This study provides a fundamental understanding of how the actuation modifies the coherent and turbulent vortex structures around the wing and in the wake.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3