Asymmetric characteristics of the shock bifurcation in the reflected shock/boundary layer interaction

Author:

Zhang Yang,Zou Jianfeng,Xie Jiahua,Li Xiaoyue,Ma Zhenhai,Zheng Yao

Abstract

Purpose When a reflected shock interacts with the boundary layer in a shock tube, the shock bifurcation occurs near the walls. Although the study of the shock bifurcation has been carried out by many researchers for several decades, little attention has been devoted to investigate the instability pattern of the bifurcation. This research work aims to successfully capture the asymmetry of the whole flow field, and attempt to achieve the instability mechanism of the shock bifurcation by a direct numerical simulation of the reflected shock wave/boundary layer interaction at Ma = 1.9. In addition, the reason for the formation of the bifurcated structure is also explored. Design/methodology/approach The spatial and temporal evolution of the shock bifurcation is obtained by solving the two-dimensional compressible Navier–Stokes equations using a seventh-order accurate weighted essentially non-oscillatory (WENO) scheme and a three-step Runge–Kutta time advancing approach. Findings The results show that the formation of shock bifurcation is mainly because of the shock/gradient field interaction, and the height of the bifurcated foot increases with the growth of the shock intensity and the gradient field. The unsteady asymmetry of the upper and bottom shock bifurcated structures is because of the vortex shedding with high frequency in the rear recirculation zone, which leads to the fluctuation of the recirculation area. The vortex shedding process behind the bifurcated structure closely resembles the Karman vortex street formed by the flow around the cylinder. The dimensionless vortex shedding frequency varies between 0.01 and 0.02. In comparison to the scenario at Ma = 1.9, the occurring time of instability is delayed and the upper and bottom bifurcated feet intersect in a relatively short time at Ma = 3.5. The region behind the bifurcated shock is a transitional flow field containing obvious cell structures and “isolated islands.” Originality/value This paper discovers an unsteady flow pattern of the shock bifurcation, and the mechanism of this instability in the reflected shock/boundary layer interaction is revealed in detail.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3