Author:
Prinz Sebastian,Schumacher Jörg,Boeck Thomas
Abstract
Purpose
This paper aims to address the performance of different subgrid-scale models (SGS) for hydro- (HD) and magnetohydrodynamic (MHD) channel flows within a collocated finite-volume scheme.
Design/methodology/approach
First, the SGS energy transfer is analyzed by a priori tests using fully resolved DNS data. Here, the focus lies on the influence of the magnetic field on the SGS energy transport. Second, the authors performed a series of 18 a posteriori model tests, using different grid resolutions and SGS models for HD and MHD channel flows.
Findings
From the a priori analysis, the authors observe a quantitative reduction of the SGS energy transport because of the action of the magnetic field depending on its orientation. The a posteriori model tests show a clear improvement because of the use of mixed-models within the numerical scheme.
Originality/value
This study demonstrates the necessity of improved SGS modeling strategies for magnetohydrodynamic channel flows within a collocated finite-volume scheme.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献