Robust active disturbance attenuation control of an uncertain quadrotor

Author:

Ahmed NigarORCID,Bhatia Ajeet kumar,Ali Shah Syed AwaisORCID

Abstract

PurposeThe aim of this research is to design a robust active disturbance attenuation control (RADAC) technique combined with an extended high gain observer (EHGO) and low pass filter (LPF).Design/methodology/approachFor designing a RADAC technique, the sliding mode control (SMC) method is used. Since the standard method of SMC exhibits a chattering phenomenon in the controller, a multilayer sliding mode surface is designed for avoiding the chattering. In addition, to attenuate the unwanted uncertainties and disturbances (UUDs), the techniques of EHGO and LPF are deployed. Besides acting as a patch for disturbance attenuation, the EHGO design estimates the state variables. To investigate the stability and effectiveness of the designed control algorithm, the stability analysis followed by the simulation study is presented.FindingsThe major findings include the design of a chattering-free RADAC controller based on the multilayer sliding mode surface. Furthermore, a criterion of integrating the LPF scheme within the EHGO scheme is also developed to attenuate matched and mismatched UUDs.Practical implicationsIn practice, the quadrotor flight is opposed by different kinds of the UUDs. And, the model of the quadrotor is a highly nonlinear underactuated model. Thus, the dynamics of the quadrotor model become more complex and uncertain due to the additional UUDs. Hence, it is necessary to design a robust disturbance attenuation technique with the ability to estimate the state variables and attenuate the UUDs and also achieve the desired control objectives.Originality/valueDesigning control methods to attenuate the disturbances while assuming that the state variables are known is a common practice. However, investigating the uncertain plants with unknown states along with the disturbances is rarely taken in consideration for the control design. Hence, this paper presents a control algorithm to address the issues of the UUDs as well as investigate a criterion to reduce the chattering incurred in the controller due to the standard SMC algorithm.

Publisher

Emerald

Reference20 articles.

1. Attitude tracking control of quadrotor with disturbance using sliding mode method,2018

2. Sliding mode control for quadrotor with disturbance observer;Advances in Mechanical Engineering,2018

3. Disturbance observer based tracking control of quadrotor with high-order disturbances;IEEE Access,2020

4. Adaptive trajectory tracking controller design for a quadrotor uav with payload variation;International Journal of Intelligent Computing and Cybernetics,2018

5. A separation principle for the stabilization of a class of nonlinear systems;IEEE Transactions on Automatic Control,1999

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3