Elasticity investigation of thin cellular structure films for piezoelectric sensors

Author:

Klimiec Ewa,Zachariasz Piotr,Kaczmarek Halina,Królikowski Bogusław,Mackiewicz Sławomir

Abstract

Purpose This paper aims to present the details of isotactic polypropylene (it-PP) films with a cellular structure (air-cavities) dedicated to pressure sensors. The polymer composites (thin films enriched with 5 and 10 wt% of mineral fillers as Sillikolloid P 87 and glass beads) should exhibit suitable structural elasticity within specific stress ranges. After the deformation force is removed, the sensor material must completely restore its original shape and size. Design/methodology/approach Estimating the stiffness tensor element (C33) for polymer films (nonpolar space-charge electrets) by broadband resonance ultrasound spectroscopy is a relatively simple method of determining the safe stress range generated in thin pressure sensors. Therefore, ultrasonic and piezoelectric studies were carried out on four composite it-PP films. First, the longitudinal velocity (vL) of ultrasonic waves passing through the it-PP film in the z-direction (thickness) was evaluated from the ω-position of mechanical resonance of the so-called insertion loss function. In turn, the d33 coefficient was calculated from accumulated piezoelectric charge density response to mechanical stress. Findings Research is at an early stage; however, it can be seen that the mechanical orientation of the it-PP film improves its piezoelectric properties. Moreover, the three-year electric charge stability of the it-PP film seems promising. Originality/value Ultrasonic spectroscopy can be successfully handled as a validation method in the small-lot production of polymer films with the air-cavities structure intended for pressure sensors. The structural repeatability of polymer films is strongly related to a homogeneous distribution of the electric charge on the electret surface.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3