Noise measurement and system calibration on magnetoresistive sensors

Author:

Dou Aiyu,Bai Ru,Zhu Huachen,Qian Zhenghong

Abstract

Purpose The noise measurement on magnetoresistive (MR) sensors is generally conducted by techniques including single-channel data sampling and fast Fourier transform (FFT) analysis as well as two-channel cross-correlation. The single-channel method is easy to implement and is widely used in the noise measurement on MR sensors, whereas the two-channel method can only eliminate part of the system noise. This study aims to address two key issues affecting measurement accuracy: calibration of the measurement system and the elimination of system noise. Design/methodology/approach The system is calibrated by using a low-noise metal film resistor in that the system noise is eliminated through power spectrum subtraction. Noise measurement and analysis are conducted for both thermal noise and detectivity of magnetic tunnel junction (MTJ) sensor. Findings The thermal noise measurement error is less than 2%. The detectivity of the MTJ sensor reaches 27 pT/Hz1/2 at 2 kHz. Originality/value This study provides a more practical solution for noise measurement and system calibration on MR sensors with a bias voltage and magnetic field.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference27 articles.

1. 1/f noise in linearized low resistance MGO magnetic tunnel junctions;Journal of Applied Physics,2006

2. Effect of buffer layers on the properties of NiFe/Cu/NiFe trilayers;IEEE Transactions on Magnetics,2017

3. Measurement and study of low-frequency noise in TMR magnetic field sensor;Acta Physica Sinica,2016

4. Low frequency picoTesla field detection using hybrid MgO based tunnel sensors;Applied Physics Letters,2007

5. Magnetoresistive sensor detectivity: a comparative analysis;Applied Physics Letters,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3