Overlapping community detection based on the union of all maximum spanning trees

Author:

Asmi KhawlaORCID,Lotfi Dounia,El Marraki Mohamed

Abstract

Purpose The state-of-the-art methods designed for overlapping community detection are limited by their high execution time as in CPM or the need to provide some parameters like the number of communities in Bigclam and Nise_sph, which is a nontrivial information. Hence, there is a need to develop the accuracy that represents the primordial goal, where the actual state-of-the-art methods do not succeed to achieve high correspondence with the ground truth for many instances of networks. The paper aims to discuss this issue. Design/methodology/approach The authors offer a new method that explore the union of all maximum spanning trees (UMST) and models the strength of links between nodes. Also, each node in the UMST is linked with its most similar neighbor. From this model, the authors extract local community for each node, and then they combine the produced communities according to their number of shared nodes. Findings The experiments on eight real-world data sets and four sets of artificial networks show that the proposed method achieves obvious improvements over four state-of-the-art (BigClam, OSLOM, Demon, SE, DMST and ST) methods in terms of the F-score and ONMI for the networks with ground truth (Amazon, Youtube, LiveJournal and Orkut). Also, for the other networks, it provides communities with a good overlapping modularity. Originality/value In this paper, the authors investigate the UMST for the overlapping community detection.

Publisher

Emerald

Subject

Library and Information Sciences,Information Systems

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Understand your shady neighborhood: An approach for detecting and investigating hacker communities;Decision Support Systems;2024-09

2. Advancing Post-Earthquake Relief: A Comprehensive Strategy Using Existing and New Centrality Measures - A Morocco's Earthquake Case Study;2024 11th International Conference on Wireless Networks and Mobile Communications (WINCOM);2024-07-23

3. Using overlapping methods to counter adversaries in community detection;Journal of Complex Networks;2024-06-24

4. Unveiling Influence in Networks: A Novel Centrality Metric and Comparative Analysis through Graph-Based Models;Entropy;2024-05-31

5. Overlapping Community Detection based on Facets of Social Network: An Empirical Analysis;2024 Fourth International Conference on Advances in Electrical, Computing, Communication and Sustainable Technologies (ICAECT);2024-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3