Tuning of GPS aided attitude estimation using evolutionary algorithms

Author:

Poddar Shashi,Hussain Sajjad,Ailneni Sanketh,Kumar Vipan,Kumar Amod

Abstract

Purpose – The purpose of this paper is to solve the problem of tuning of EKF parameters (process and measurement noise co-variance matrices) designed for attitude estimation using Global Positioning System (GPS) aided inertial sensors by employing a Human Opinion Dynamics (HOD)-based optimization technique and modifying the technique using maximum likelihood estimators and study its performance as compared to Particle Swarm Optimization (PSO) and manual tuning. Design/methodology/approach – A model for the determination of attitude of flight vehicles using inertial sensors and GPS measurement is designed and experiments are carried out to collect raw sensor and reference data. An HOD-based model is utilized to estimate the optimized process and measurement noise co-variance matrix. Added to it, few modifications are proposed in the HOD model by utilizing maximum likelihood estimator and finally the results obtained by the proposed schemes analysed. Findings – Analysis of the results shows that utilization of evolutionary algorithms for tuning is a significant improvement over manual tuning and both HOD and PSO-based methods are able to achieve the same level of accuracy. However, the HOD methods show better convergence and is easier to implement in terms of tuning parameters. Also, utilization of maximum likelihood estimator shows better search during initial iterations which increases the robustness of the algorithm. Originality/value – The paper is unique in its sense that it utilizes a HOD-based model to solve tuning problem of EKF for attitude estimation.

Publisher

Emerald

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3