Sustainable development early warning and financing risk management of resource-based industrial clusters using optimization algorithms

Author:

Wang YawenORCID,Xue WeixianORCID

Abstract

PurposeThe purpose is to analyze and discuss the sustainable development (SD) and financing risk assessment (FRA) of resource-based industrial clusters under the Internet of Things (IoT) economy and promote the application of Machine Learning methods and intelligent optimization algorithms in FRA.Design/methodology/approachThis study used the Support Vector Machine (SVM) algorithm that is analyzed together with the Genetic Algorithm (GA) and Ant Colony Optimization (ACO) algorithm. First, Yulin City in Shaanxi Province is selected for case analysis. Then, resource-based industrial clusters are studied, and an SD early-warning model is implemented. Then, the financing Risk Assessment Index System is established from the perspective of construction-operation-transfer. Finally, the risk assessment results of Support Vector Regression (SVR) and ACO-based SVR (ACO-SVR) are analyzed.FindingsThe results show that the overall sustainability of resource-based industrial clusters and IoT industrial clusters is good in the Yulin City of Shaanxi Province, and the early warning model of GA-based SVR (GA-SVR) has been achieved good results. Yulin City shows an excellent SD momentum in the resource-based industrial cluster, but there are still some risks. Therefore, it is necessary to promote the industrial structure of SD and improve the stability of the resource-based industrial cluster for Yulin City.Originality/valueThe results can provide a direction for the research on the early warning and evaluation of the SD-oriented resource-based industrial clusters and the IoT industrial clusters, promoting the application of SVM technology in the engineering field.

Publisher

Emerald

Subject

Information Systems,Management of Technology and Innovation,General Decision Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3