Author:
Kiran Kotaru,D. Rajeswara Rao
Abstract
Purpose
Vertical handover has been grown rapidly due to the mobility model improvements. These improvements are limited to certain circumstances and do not provide the support in the generic mobility, but offering vertical handover management in HetNets is very crucial and challenging. Therefore, this paper presents a vertical handoff management method using the effective network identification method.
Design/methodology/approach
This paper presents a vertical handoff management method using the effective network identification method. The handover triggering schemes are initially modeled to find the suitable position for starting handover using computed coverage area of the WLAN access point or cellular base station. Consequently, inappropriate networks are removed to determine the optimal network for performing the handover process. Accordingly, the network identification approach is introduced based on an adaptive particle-based Sailfish optimizer (APBSO). The APBSO is newly designed by incorporating self-adaptive particle swarm optimization (APSO) in Sailfish optimizer (SFO) and hence, modifying the update rule of the APBSO algorithm based on the location of the solutions in the past iterations. Also, the proposed APBSO is utilized for training deep-stacked autoencoder to choose the optimal weights. Several parameters, like end to end (E2E) delay, jitter, signal-to-interference-plus-noise ratio (SINR), packet loss, handover probability (HOP) are considered to find the best network.
Findings
The developed APBSO-based deep stacked autoencoder outperformed than other methods with a minimal delay of 11.37 ms, minimal HOP of 0.312, maximal stay time of 7.793 s and maximal throughput of 12.726 Mbps, respectively.
Originality/value
The network identification approach is introduced based on an APBSO. The APBSO is newly designed by incorporating self-APSO in SFO and hence, modifying the update rule of the APBSO algorithm based on the location of the solutions in the past iterations. Also, the proposed APBSO is used for training deep-stacked autoencoder to choose the optimal weights. Several parameters, like E2E delay, jitter, SINR, packet loss and HOP are considered to find the best network. The developed APBSO-based deep stacked autoencoder outperformed than other methods with minimal delay minimal HOP, maximal stay time and maximal throughput.
Subject
General Computer Science,Theoretical Computer Science
Reference40 articles.
1. Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets;IEEE Access,2019
2. Advanced handover self-optimization approach for 4G/5G HetNets using weighted fuzzy logic control;In Elecommunications,2019
3. Handover management in software-defined ultra-dense 5G networks;IEEE Network,2017
4. A generic signaling framework for seamless mobility in heterogeneous wireless networks,2011
5. Optimization of coverage in 5G self-organizing small cell networks;Mobile Networks and Applications,2018
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献