5G heterogeneous network (HetNets): a self-optimization technique for vertical handover management

Author:

Kiran Kotaru,D. Rajeswara Rao

Abstract

Purpose Vertical handover has been grown rapidly due to the mobility model improvements. These improvements are limited to certain circumstances and do not provide the support in the generic mobility, but offering vertical handover management in HetNets is very crucial and challenging. Therefore, this paper presents a vertical handoff management method using the effective network identification method. Design/methodology/approach This paper presents a vertical handoff management method using the effective network identification method. The handover triggering schemes are initially modeled to find the suitable position for starting handover using computed coverage area of the WLAN access point or cellular base station. Consequently, inappropriate networks are removed to determine the optimal network for performing the handover process. Accordingly, the network identification approach is introduced based on an adaptive particle-based Sailfish optimizer (APBSO). The APBSO is newly designed by incorporating self-adaptive particle swarm optimization (APSO) in Sailfish optimizer (SFO) and hence, modifying the update rule of the APBSO algorithm based on the location of the solutions in the past iterations. Also, the proposed APBSO is utilized for training deep-stacked autoencoder to choose the optimal weights. Several parameters, like end to end (E2E) delay, jitter, signal-to-interference-plus-noise ratio (SINR), packet loss, handover probability (HOP) are considered to find the best network. Findings The developed APBSO-based deep stacked autoencoder outperformed than other methods with a minimal delay of 11.37 ms, minimal HOP of 0.312, maximal stay time of 7.793 s and maximal throughput of 12.726 Mbps, respectively. Originality/value The network identification approach is introduced based on an APBSO. The APBSO is newly designed by incorporating self-APSO in SFO and hence, modifying the update rule of the APBSO algorithm based on the location of the solutions in the past iterations. Also, the proposed APBSO is used for training deep-stacked autoencoder to choose the optimal weights. Several parameters, like E2E delay, jitter, SINR, packet loss and HOP are considered to find the best network. The developed APBSO-based deep stacked autoencoder outperformed than other methods with minimal delay minimal HOP, maximal stay time and maximal throughput.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference40 articles.

1. Auto tuning self-optimization algorithm for mobility management in LTE-A and 5G HetNets;IEEE Access,2019

2. Advanced handover self-optimization approach for 4G/5G HetNets using weighted fuzzy logic control;In Elecommunications,2019

3. Handover management in software-defined ultra-dense 5G networks;IEEE Network,2017

4. A generic signaling framework for seamless mobility in heterogeneous wireless networks,2011

5. Optimization of coverage in 5G self-organizing small cell networks;Mobile Networks and Applications,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization strategy of base station energy consumption based on predictive control;Eighth International Conference on Energy System, Electricity, and Power (ESEP 2023);2024-05-13

2. A Survey of Handover Management in Mobile HetNets: Current Challenges and Future Directions;Applied Sciences;2023-03-06

3. A Novel Cooperative Relaying-Based Vertical Handover Technique for Unmanned Aerial Vehicles;Security and Communication Networks;2022-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3