Evaluation of failure risks for manual tightening operations in automotive assembly lines

Author:

Altinisik Armagan,Yildirim Utku,Topcu Y. Ilker

Abstract

Purpose The tightening operations are one of the most critical operations in automotive assembly lines because of its direct impact on customer safety. This study aims to evaluate the major complexity drivers for manual tightening operations, correlate with real tightening failure data and propose mitigations to improve the complexity. Design/methodology/approach In the first stage, the complexity drivers for manual tightening operations were identified. Then, the relative importance of the risk attributes was defined by using pairwise comparisons questionnaire. Further, failure mode effect analysis–analytic hierarchy process (FMEA–AHP) and AHP ratings methods were applied to 20 manual tightening operations in automotive assembly lines. Finally, the similarities between the revealed results and the real failure rates of a Turkish automotive factory were examined and a sensitivity analysis was conducted. Findings The correlation between the proposed methods and manual tightening failure data was calculated as 83%–86%. On the other hand, the correlation between FMEA–AHP and AHP ratings was found as 92%. Poor ergonomics, operator competency and training, operator concentration-loose attention fatigue, manual mouthing before the tightening operation, frequent task changes, critical tightening sequence, positioning of the part and/or directional assembly were found relatively critical for the selected 20 tightening operations. Originality/value This is a unique study for the evaluation of the attributes for manual tightening complexity in automotive assembly lines. The output of this study can be used to improve manual tightening failures in manual assembly lines and to create low complexity assembly lines in new model launches.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference52 articles.

1. Modeling and analysis of operator effects on process quality and throughput in mixed model assembly systems;ASME Journal of Manufacturing Science and Engineering,2011

2. A model for complexity assessment in manual assembly operations through predetermined motion time systems;Procedia CIRP,2016

3. Failure prediction in electrical connector assembly: a case in automotive assembly process;Assembly Automation,2020

4. Antani, R.K. (2014), “A study of the effects of manufacturing complexity on product quality in mixed-model automotive assembly”, All Dissertations, Paper 1540, Clemson University.

5. An occupational disease assessment of the mining ındustry’s occupational health and safety management system based on FMEA and an ımproved AHP model;Sustainability,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3