Author:
Wang Pan,Li Yuan,Yu Lin,Zhang Jie,Xu Zhijia
Abstract
Purpose
– The purpose of this paper is to provide a novel assembly simulation method to reduce the repetitive and tedious assembly simulation work. Currently, assembly simulation is always carried out by human–computer interaction, which is a time-consuming and tedious work. The most important reason for this problem is that the assembly simulation is a mapping between human intent and movements of models; at the same time, assembly information is transferred from semantic level to geometric level. However, some essential assembly information is lost during the transfer, and it must be accomplished through manual definition. To address the issue, a novel assembly simulation method is proposed in this paper based on semantics and geometric constraint.
Design/methodology/approach
– First, an assembly operation semantic model is put forward to integrate and manage the semantic information of assembly, and some rules for modeling are generalized. Second, method for transferring assembly information from semantic level to geometric level is presented by dividing assembly operation into a set of simulation actions and providing some rules for this division. Then, a geometric constraint-based calculation method is proposed to obtain the essential parameters of each simulation action. Finally, cases are studied to demonstrate the effectiveness of the method.
Findings
– Results show that laborious work would be reduced, and the redundant human participation would be avoided in assembly simulation.
Practical implications
– It has the potential and possibility to change the current pattern of assembly simulation.
Originality/value
– A novel assembly simulation method based on semantics and geometric constraint is presented to make assembly simulation more convenient and faster.
Subject
Industrial and Manufacturing Engineering,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献