Assembly process case matching based on a multilevel assembly ontology method

Author:

Gong Hanqing,Shi Lingling,Zhai Xiang,Du Yimin,Zhang Zhijing

Abstract

Purpose The purpose of this study is to achieve accurate matching of new process cases to historical process cases and then complete the reuse of process knowledge and assembly experience. Design/methodology/approach By integrating case-based reasoning (CBR) and ontology technology, a multilevel assembly ontology is proposed. Under the general framework, the knowledge of the assembly domain is described hierarchically and associatively. On this basis, an assembly process case matching method is developed. Findings By fully considering the influence of ontology individual, case structure, assembly scenario and introducing the correction factor, the similarity between non-correlated parts is significantly reduced. Compared with the Triple Matching-Distance Model, the degree of distinction and accuracy of parts matching are effectively improved. Finally, the usefulness of the proposed method is also proved by the matching of four practical assembly cases of precision components. Originality/value The process knowledge in historical assembly cases is expressed in a specific ontology framework, which makes up for the defects of the traditional CBR model. The proposed matching method takes into account all aspects of ontology construction and can be used well in cross-ontology similarity calculations.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference51 articles.

1. Knowledge-intensive case-based reasoning in creek,2004

2. Reasoning in semantic web using Jena;Computer Engineering and Intelligent Systems,2014

3. Knowledge representation model based on case-based reasoning and the domain ontology: application to the it consultation;IFAC-PapersOnLine,2018

4. Case-based reasoning for crisis response: case representation and case retrieval;Procedia Computer Science,2020

5. Structural case-based reasoning and ontology-based knowledge management: a perfect match?;Journal of Universal Computer Science,2003

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3