Application of social media analytics: a case of analyzing online hotel reviews

Author:

He Wu,Tian Xin,Tao Ran,Zhang Weidong,Yan Gongjun,Akula Vasudeva

Abstract

Purpose Online customer reviews could shed light into their experience, opinions, feelings, and concerns. To gain valuable knowledge about customers, it becomes increasingly important for businesses to collect, monitor, analyze, summarize, and visualize online customer reviews posted on social media platforms such as online forums. However, analyzing social media data is challenging due to the vast increase of social media data. The purpose of this paper is to present an approach of using natural language preprocessing, text mining and sentiment analysis techniques to analyze online customer reviews related to various hotels through a case study. Design/methodology/approach This paper presents a tested approach of using natural language preprocessing, text mining, and sentiment analysis techniques to analyze online textual content. The value of the proposed approach was demonstrated through a case study using online hotel reviews. Findings The study found that the overall review star rating correlates pretty well with the sentiment scores for both the title and the full content of the online customer review. The case study also revealed that both extremely satisfied and extremely dissatisfied hotel customers share a common interest in the five categories: food, location, rooms, service, and staff. Originality/value This study analyzed the online reviews from English-speaking hotel customers in China to understand their preferred hotel attributes, main concerns or demands. This study also provides a feasible approach and a case study as an example to help enterprises more effectively apply social media analytics in practice.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Reference45 articles.

1. The impact of social media on lodging performance;Cornell Hospitality Reports,2012

2. Understanding satisfied and dissatisfied hotel customers: text mining of online hotel reviews;Journal of Hospitality Marketing & Management,2016

3. Twitter mood predicts the stock market;Journal of Computational Science,2011

4. Word of mouth communication within online communities: conceptualising the online social network;Journal of Interactive Marketing,2007

5. Credibility of electronic word-of-mouth: Informational and normative determinants of on-line consumer recommendations;International Journal of Electronic Commerce,2009

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3