Author:
Cotta Renato M,Naveira-Cotta Carolina Palma,Knupp Diego C.
Abstract
Purpose
– The purpose of this paper is to propose the generalized integral transform technique (GITT) to the solution of convection-diffusion problems with nonlinear boundary conditions by employing the corresponding nonlinear eigenvalue problem in the construction of the expansion basis.
Design/methodology/approach
– The original nonlinear boundary condition coefficients in the problem formulation are all incorporated into the adopted eigenvalue problem, which may be itself integral transformed through a representative linear auxiliary problem, yielding a nonlinear algebraic eigenvalue problem for the associated eigenvalues and eigenvectors, to be solved along with the transformed ordinary differential system. The nonlinear eigenvalues computation may also be accomplished by rewriting the corresponding transcendental equation as an ordinary differential system for the eigenvalues, which is then simultaneously solved with the transformed potentials.
Findings
– An application on one-dimensional transient diffusion with nonlinear boundary condition coefficients is selected for illustrating some important computational aspects and the convergence behavior of the proposed eigenfunction expansions. For comparison purposes, an alternative solution with a linear eigenvalue problem basis is also presented and implemented.
Originality/value
– This novel approach can be further extended to various classes of nonlinear convection-diffusion problems, either already solved by the GITT with a linear coefficients basis, or new challenging applications with more involved nonlinearities.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献