Natural convection of a hybrid nanofluid subjected to non-uniform magnetic field within porous medium including circular heater

Author:

Izadi Mohsen,Maleki Nemat M.,Pop Ioan,Mehryan S.A.M.

Abstract

PurposeThis paper aims to numerically investigate the natural convection heat transfer of a hybrid nanofluid into a porous cavity exposed to a variable magnetic field.Design/methodology/approachThe non-linear elliptical governing equations have been solved numerically using control volume based finite element method. The effects of different governing parameters including Rayleigh number (Ra= 103− 106), Hartman number (Ha= 0 − 50), volume fraction of nanoparticles (φ= 0 − 0.02), curvature of horizontal isolated wall (a= 0.85 − 1.15), porosity coefficient (ε= 0.1 − 0.9) and Darcy number (Da= 10−5− 10−1) have been studied.FindingsThe results indicate that at low Darcy numbers close to 0, the average Nusselt numberNuaenhances as porosity coefficient increases. Fora= 1 anda= 1.15 in comparison witha= 0.85, the stretching of the isothermal lines is maintained from the left side to the right side and vice versa, which indicates increased natural convection heat transfer for this configuration of the top and bottom walls. In addition, at higher Rayleigh numbers, by increasing the Hartmann number, a significant decrease is observed in the Nusselt number, which can be attributed to the decreased power of the flow.Originality/valueThe authors believe that all the results, both numerical and asymptotic, are original and have not been published elsewhere.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference66 articles.

1. Effects of two-phase nanofluid model on natural convection in a square cavity in the presence of an adiabatic inner block and magnetic field;International Journal of Numerical Methods for Heat and Fluid Flow,2018

2. The simultaneous effects of nanoparticles and ultrasonic vibration on inlet turbulent flow: an experimental study;Applied Thermal Engineering,2018

3. A control volume finite-element method for two-dimensional fluid flow and heat transfer;Numerical Heat Transfer,1983

4. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu nanofluids flowing in a circular pipe;Journal of Oleo Science,2013

5. A benchmark study on the thermal conductivity of nanofluids;Journal of Applied Physics,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3