Rotating flow of Oldroyd-B fluid over stretchable surface with Cattaneo – Christov heat flux

Author:

Mustafa M.,Hayat T.,Alsaedi A.

Abstract

Purpose The purpose of this paper is to analyze the heat transfer effects on the stretched flow of Oldroyd-B fluid in a rotating frame. Cattaneo–Christov heat conduction model is considered, which accounts for the influence of thermal relaxation time. Design/methodology/approach Based on scale analysis, the usual boundary layer approximations are used to simplify the governing equations. The equations so formed have been reduced to self-similar forms by similarity transformations. A powerful analytic approach, namely, homotopy analysis method (HAM), has been applied to present uniformly convergent solutions for velocity and temperature profiles. Findings Suitable values of the so-called auxiliary parameter in HAM are obtained by plotting h-curves. The results show that boundary layer thickness has an inverse relation with fluid relaxation time. The rotation parameter gives resistance to the momentum transport and enhances fluid temperature. Thermal boundary layer becomes thinner when larger values of thermal relaxation time are chosen. Originality/value To the authors’ knowledge, this is the first attempt to study the three-dimensional rotating flow and heat transfer of Oldroyd-B fluid.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference34 articles.

1. Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid;International Journal of Numerical Methods for Heat & Fluid Flow,2014

2. Influence of Cattaneo-Christov heat flux in flow of an Oldroyd-B fluid with variable thermal conductivity;International Journal of Numerical Methods for Heat & Fluid Flow,2016

3. Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity;International Journal of Non-Linear Mechanics,1995

4. Sulla conduzione del calore,1948

5. On frame indifferent formulation of the Maxwell–Cattaneo model of finite-speed heat conduction;Mechanics Research Communications,2009

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3