An empirical regression model toward optimized ergonomic conditions for monitoring room operators using RSM

Author:

Fallahiarezoudar Ehsan,Ahmadipourroudposht Mohaddeseh,Ngadiman Nor Hasrul Akhmal

Abstract

Purpose This study aims to provide an ergonomic design of the monitoring room that has resulted in safe, functional and comfortable environment for the operators, which may lead to improve the efficiency. Currently, uses of closed‐circuit televisions to monitor the critical environments are widely applicable. The information is continuously transferred and analyzed through a center called monitoring room. Design/methodology/approach Here, through creating a systematic analysis, a series of experiments was performed initially to evaluate and then optimize the parameters such as illumination, visual angle, operator-screen distance, number of scenes display in a single screen, workstation height, screen dimension and monitoring time that may affect the visual skill of the operators. Taguchi orthogonal array was used to analyze the significance of parameters on operator’s response time to a threat. The five parameters were distinguished as significant. Later response surface methodology was utilized to optimize the parameters. Findings Quadratic empirical model developed for the response time exposes the optimum response time was achievable at illumination of 500 lux, visual angle of 13°, operator-screen distance of 60 cm, three scenes, workstation height of 120 cm, screen dimension of 34” and monitoring time of 15 min. This shortened the response time by 28 per cent. The adequacy of the fitted model was successfully verified using the confirmation test with α = 95 per cent. Originality/value The novelty of this work lies in the application of a systematic statistical analysis, which enables considering the interaction among the noise parameters and controllable one simultaneously. Furthermore, the obtained regression model can widely be used for adjusting the parameters accordingly based on various anthropometric data.

Publisher

Emerald

Subject

Building and Construction,Architecture,Human Factors and Ergonomics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3