Author:
Hornberger Zachary,Cox Bruce,Hill Raymond R.
Abstract
Purpose
Large/stochastic spatiotemporal demand data sets can prove intractable for location optimization problems, motivating the need for aggregation. However, demand aggregation induces errors. Significant theoretical research has been performed related to the modifiable areal unit problem and the zone definition problem. Minimal research has been accomplished related to the specific issues inherent to spatiotemporal demand data, such as search and rescue (SAR) data. This study provides a quantitative comparison of various aggregation methodologies and their relation to distance and volume based aggregation errors.
Design/methodology/approach
This paper introduces and applies a framework for comparing both deterministic and stochastic aggregation methods using distance- and volume-based aggregation error metrics. This paper additionally applies weighted versions of these metrics to account for the reality that demand events are nonhomogeneous. These metrics are applied to a large, highly variable, spatiotemporal demand data set of SAR events in the Pacific Ocean. Comparisons using these metrics are conducted between six quadrat aggregations of varying scales and two zonal distribution models using hierarchical clustering.
Findings
As quadrat fidelity increases the distance-based aggregation error decreases, while the two deliberate zonal approaches further reduce this error while using fewer zones. However, the higher fidelity aggregations detrimentally affect volume error. Additionally, by splitting the SAR data set into training and test sets this paper shows the stochastic zonal distribution aggregation method is effective at simulating actual future demands.
Originality/value
This study indicates no singular best aggregation method exists, by quantifying trade-offs in aggregation-induced errors practitioners can utilize the method that minimizes errors most relevant to their study. Study also quantifies the ability of a stochastic zonal distribution method to effectively simulate future demand data.
Reference27 articles.
1. Us Coast guard air station location with respect to distress calls: a spatial statistics and optimization based methodology;European Journal of Operational Research,2009
2. The optimization model for the location of maritime emergency supplies reserve bases and the configuration of salvage vessels;Transportation Research Part E: Logistics and Transportation Review,2015
3. A maritime search and rescue location analysis considering multiple criteria, with simulated demand;INFOR: Information Systems and Operational Research,2018
4. A modular capacitated multi-objective model for locating Maritime search and rescue vessels;Annals of Operations Research,2018
5. Spatial analyses of crime;Criminal Justice,2000
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献