Exoskeleton for lower extremities based on Indian anthropomorphism with gait allowance: design and development

Author:

C.R. Abhilash,Murali Sriraksha,Haq M. Abdul,Bysani Tanay N.,Narahari N.S.

Abstract

Purpose In certain industrial operations, workers are required to stand for a prolonged duration. This leads to muscular fatigue in the legs, posing a threat to the productivity and well-being of the workers. This paper aims to address this problem of women in the clothing industry with an exoskeleton designed for lower extremities and improve productivity. Design/methodology/approach Ulrich’s product design approach has been followed with suitable modifications. The methodology involves a study to justify the need for this product and terminating at the physical and virtual evaluations of the product. Required anthropometric parameters are considered along the design process. Findings The exoskeleton discussed in this paper is an innovative product made of Aluminium 6061 alloy. During the simulation phase of the product, total von-mises stresses to a part bearing 1 leg were 31.5 MPa, 94.7 MPa and 284 MPa for aluminium, SS308 and springs, respectively. These values are below the yield limit by a great margin. Based on a user survey of this product, 72% of the targeted customers were interested in buying. Also, comparing electromyography (EMG) mean value of the voltage between workers’ leg with and without exoskeleton revealed that there was an improvement in the voltage by 2.5% when exoskeleton was used. Originality/value This paper emphasizes, for the first time – the necessity of an exoskeleton indigenized for the Indian population and the process of realizing it by designing an exoskeleton.

Publisher

Emerald

Subject

General Engineering

Reference27 articles.

1. A lower limb exoskeleton with hybrid actuation,2014

2. A review of studies concerning prolonged standing working posture;Advanced Engineering Forum,2013

3. Design for customized additive manufactured exoskeleton using bio CAD modeling;International Journal of Innovative Research in Science, Engineering and Technology,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3