A novel multi-attribute three-way decision model with three-parameter interval grey number decision-theoretic rough sets

Author:

Qiao YuORCID,Jian Lirong,Cai HechangORCID

Abstract

PurposeTo overcome the limitations of traditional multi-attribute decision making (MADM) methods, which only provide deterministic rankings of decision objects, this paper proposes a novel multi-attribute 3WD model. This model presents three-parameter interval grey number decision-theoretic rough sets (TPIGNDTRSs), aiming to offer a reasoned interpretation of loss functions in grey environments and ensure objective assessment of conditional probabilities.Design/methodology/approachFirstly, the traditional equivalence relation is replaced with the probabilistic dominance relation (PDR), categorizing decision objects into two state sets in DTRS for more objective conditional probabilities. Secondly, as the three-parameter interval grey number (TPIGN) introduces the most probable value on the basis of the traditional two-parameter interval grey number, it provides a more comprehensive method for describing grey information. Consequently, integrating TPIGN into DTRS refines the interpretations of loss functions in grey environments. Finally, by utilizing two main sorting techniques, relative kernel and degree of accuracy ranking and possibility ranking, two types of 3WD rules with TPIGNDTRSs, are constructed.FindingsThis study has successfully developed and validated a new multi-attribute 3WD model. The model was tested in two distinct domains: evaluating innovation efficiency in high-tech enterprises and recommending movies in a practical case. The findings reveal that the model can effectively integrate relevant information of high-tech enterprises, provide the government with enterprise-level assessments, and gather consumer preferences to recommend the most suitable movies.Research limitations/implicationsThis study treats the loss function as grey information in the 3WD model but overlooks the grey nature of evaluation values, limiting its applicability. Additionally, the model’s reliance on subjective expert judgments and historical data to establish the loss function may affect its objectivity. The implications of this research are that the novel model overcomes traditional MADM limitations, enhancing decision-making quality and efficiency in complex and grey scenarios. The model’s successful application in evaluating high-tech enterprises and recommending movies illustrates its dual value in both theory and practice.Originality/valueInitially, the model proposed in this study is of significant importance for the development of the 3WD field, as it successfully addresses the challenges of uncertain loss functions and unknown conditional probabilities in grey information environments. Moreover, by integrating the 3WD model with MADM problems, it has broken through the bottlenecks of traditional MADM methods, offering new perspectives and strategies for solving MADM issues. Therefore, this research not only advances theoretical research but also provides powerful tools for practical applications.

Publisher

Emerald

Reference54 articles.

1. Three-way decisions based multi-attribute decision-making with utility and loss functions;European Journal of Operational Research,2024

2. Decision making method of topsis based on three-parameter interval grey numbers;Systems Engineering and Electronics,2019

3. A novel multivariate grey model for forecasting periodic oscillation time series;Expert Systems with Applications,2023

4. A novel grey multi-criteria three-way decisions model and its application;Computers and Industrial Engineering,2021

5. Ensemble learning using three-way density-sensitive spectral clustering;International Journal of Approximate Reasoning,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3