Investigation on cohesive zone model of bolted joint for water conveyance tunnel lining

Author:

Li Bingqi,Zhang Zhenyu,Wang Xiaogang,Liu Xiaonan

Abstract

Purpose The behavior of joints has a significant effect on the stability of water conveyance tunnel. The purpose of this paper is to study the contact and friction at the joint of the tunneling segment lining and establish its contact friction model. At the same time, the stress and deformation characteristics at the joint of the segment under hydrostatic load are analyzed. Design/methodology/approach In this study, the contact and friction in a bolted joint are examined using shear testing. The feasibility of the proposed model is verified by a numerical simulation of tests and a theoretical analysis. Accordingly, the effect of joints on the lining is explored under internal hydrostatic loading. Findings The results show that the openings of tunnel segments in joints gradually expand from the positions of the inner and outer edges to the location of the bolt. Moreover, the stress concentration zone is formed at the bolt. Under hydraulic loading, the opening displacement at the joint increases as the water pressure increases; nevertheless, it does not exceed engineering requirements. When the water pressure of the tunnel lining joint reaches 0.5 MPa, the opening of the joint slowly increases. When the water pressure exceeds 0.7 MPa, the opening of the joint rapidly and significantly increases. Originality/value Contact and friction in a bolted joint were examined using shear testing. A cohesive zone model of bolted joints was proposed based on test results. The influence of joint behavior on the stability of water conveyance tunnel was studied.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Reference36 articles.

1. Abaqus analysis user’s guide 6.14;ABAQUS Inc,2014

2. A practical method for uniaxial tension test of concrete;Materials and Structures,2003

3. Analysis of the failure of bonded interface between aluminium skin and FRP patch using cohesive zone model;Journal of the Institution of Engineers,2018

4. The formation of equilibrium cracks during brittle fracture: general ideas and hypotheses: axially-symmetric cracks;Journal of Applied Mathematics and Mechanics,1959

5. Elasticity in engineering mechanics;Journal of Applied Mechanics,2011

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3