Low-cost multi-objective optimization and experimental validation of UWB MIMO antenna

Author:

Koziel Slawomir,Bekasiewicz Adrian

Abstract

Purpose – The purpose of this paper is to validate methodologies for expedited multi-objective design optimization of complex antenna structures both numerically and experimentally. Design/methodology/approach – The task of identifying the best possible trade-offs between the antenna size and its electrical performance is formulated as multi-objective optimization problem. Algorithmic frameworks are described for finding Pareto-optimal designs using auxiliary surrogate models and two alternative approaches to design refinement: response correction techniques and co-kriging. Numerical and experimental case studies are provided to demonstrate feasibility of solving real-world and complex antenna design tasks. Findings – It is possible, through appropriate combination of the surrogate modeling techniques (both data driven and physics based) and response correction methods, to find the set of alternative designs representing the best possible trade-offs between conflicting design objectives, here, electrical performance and size. Design optimization can be performed at practically feasible computational costs. Research limitations/implications – The study demonstrates feasibility of automated multi-objective design optimization of antennas at low computational cost. The presented techniques reach beyond the commonly used design approaches based on parameter sweeps and similar hands-on methods, particularly in terms of automation, reliability and reduction of the computational costs of the design processes. Originality/value – Multi-objective design of antenna structures is very challenging when high-fidelity electromagnetic simulations are utilized for performance evaluation of the structure at hand. The proposed design framework permits rapid optimization of complex structures (here, MIMO antenna), which is hardly possible using conventional methods.

Publisher

Emerald

Subject

Computational Theory and Mathematics,Computer Science Applications,General Engineering,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multi-objective Naked Mole-Rat Algorithm for UWB Antenna Design;IETE Journal of Research;2021-04-22

2. Multi-objective design optimization of antennas for reflection, size, and gain variability using kriging surrogates and generalized domain segmentation;International Journal of RF and Microwave Computer-Aided Engineering;2018-02-01

3. Computationally feasible narrow-band antenna modeling using response features;International Journal of RF and Microwave Computer-Aided Engineering;2017-01-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3