Examining the mass loss and thermal properties of 3D printed models produced by fused deposition modeling and stereolithography under elevated temperatures

Author:

Hsieh Shu-An,Anderson Jared L.

Abstract

Purpose This paper aims to study the mass loss of three-dimensional (3D) printed materials at high temperatures. A preconcentration and analysis technique, static headspace gas chromatography-mass spectrometry (SHS-GC-MS), is demonstrated for the analysis of volatile compounds liberated from fused deposition modeling (FDM) and stereolithography (SLA) 3D printed models under elevated temperatures. Design/methodology/approach A total of seven commercial 3D printing materials were tested using the SHS-GC-MS approach. The printed model mass and mass loss were examined as a function of FDM printing parameters including printcore temperature, model size and printing speed, and the use of SLA postprocessing procedures. A high temperature resin was used to demonstrate that thermal degradation products can be identified when the model is incubated under high temperatures. Findings At higher printing temperatures and larger model sizes, the initial printed model mass increased and showed more significant mass loss after thermal incubation for FDM models. For models produced by SLA, the implementation of a postprocessing procedure reduced the mass loss at elevated temperatures. All FDM models showed severe structural deformation when exposed to high temperatures, while SLA models remained structurally intact. Mass spectra and chromatographic retention times acquired from the high temperature resin facilitated identification of eight compounds (monomers, crosslinkers and several photoinitiators) liberated from the resin. Originality/value The study exploits the high sensitivity of SHS-GC-MS to identify thermal degradation products emitted from 3D printed models under elevated temperatures. The results will aid in choosing appropriate filament/resin materials and printing mechanisms for applications that require elevated temperatures.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3