Toward data-driven research: preliminary study to predict surface roughness in material extrusion using previously published data with machine learning

Author:

García-Martínez Fátima,Carou Diego,de Arriba-Pérez Francisco,García-Méndez Silvia

Abstract

Purpose Material extrusion is one of the most commonly used approaches within the additive manufacturing processes available. Despite its popularity and related technical advancements, process reliability and quality assurance remain only partially solved. In particular, the surface roughness caused by this process is a key concern. To solve this constraint, experimental plans have been exploited to optimize surface roughness in recent years. However, the latter empirical trial and error process is extremely time- and resource consuming. Thus, this study aims to avoid using large experimental programs to optimize surface roughness in material extrusion. Design/methodology/approach This research provides an in-depth analysis of the effect of several printing parameters: layer height, printing temperature, printing speed and wall thickness. The proposed data-driven predictive modeling approach takes advantage of Machine Learning (ML) models to automatically predict surface roughness based on the data gathered from the literature and the experimental data generated for testing. Findings Using ten-fold cross-validation of data gathered from the literature, the proposed ML solution attains a 0.93 correlation with a mean absolute percentage error of 13%. When testing with our own data, the correlation diminishes to 0.79 and the mean absolute percentage error reduces to 8%. Thus, the solution for predicting surface roughness in extrusion-based printing offers competitive results regarding the variability of the analyzed factors. Research limitations/implications There are limitations in obtaining large volumes of reliable data, and the variability of the material extrusion process is relatively high. Originality/value Although ML is not a novel methodology in additive manufacturing, the use of published data from multiple sources has barely been exploited to train predictive models. As available manufacturing data continue to increase on a daily basis, the ability to learn from these large volumes of data is critical in future manufacturing and science. Specifically, the power of ML helps model surface roughness with limited experimental tests.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference66 articles.

1. How surface roughness performance of printed parts manufactured by desktop FDM 3D printer with PLA+ is influenced by measuring direction;American Journal of Mechanical Engineering,2017

2. Quality performance evaluation of thin walled PLA 3d printed parts using the Taguchi method and grey relational analysis;Journal of Manufacturing and Materials Processing,2020

3. Software defects prediction using machine learning algorithms,2020

4. Big data analytics capability and decision-making: the role of data-driven insight on circular economy performance;Technological Forecasting and Social Change,2021

5. Informing additive manufacturing technology adoption: total cost and the impact of capacity utilisation;International Journal of Production Research,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3