Distribution of temperature and residual stresses in GMA-DED based wire-arc additive manufacturing

Author:

Srivastava Shekhar,Garg Rajiv Kumar,Sachdeva Anish,Sharma Vishal S.,Singh Sehijpal,Gupta Munish Kumar

Abstract

Purpose Gas metal arc-based directed energy deposition (GMA-DED) process experiences residual stress (RS) developed due to heat accumulation during successive layer deposition as a significant challenge. To address that, monitoring of transient temperature distribution concerning time is a critical input. Finite element analysis (FEA) is considered a decisive engineering tool in quantifying temperature and RS in all manufacturing processes. However, computational time and prediction accuracy has always been a matter of concern for FEA-based prediction of responses in the GMA-DED process. Therefore, this study aims to investigate the effect of finite element mesh variations on the developed RS in the GMA-DED process. Design/methodology/approach The variation in the element shape functions, i.e. linear- and quadratic-interpolation elements, has been used to model a single-track 10-layered thin-walled component in Ansys parametric design language. Two cases have been proposed in this study: Case 1 has been meshed with the linear-interpolation elements and Case 2 has been meshed with the combination of linear- and quadratic-interpolation elements. Furthermore, the modelled responses are authenticated with the experimental results measured through the data acquisition system for temperature and RS. Findings A good agreement of temperature and RS profile has been observed between predicted and experimental values. Considering similar parameters, Case 1 produced an average error of 4.13%, whereas Case 2 produced an average error of 23.45% in temperature prediction. Besides, comparing the longitudinal stress in the transverse direction for Cases 1 and 2 produced an error of 8.282% and 12.796%, respectively. Originality/value To avoid the costly and time-taking experimental approach, the experts have suggested the utilization of numerical methods in the design optimization of engineering problems. The FEA approach, however, is a subtle tool, still, it faces high computational cost and low accuracy based on the choice of selected element technology. This research can serve as a basis for the choice of element technology which can predict better responses in the thermo-mechanical modelling of the GMA-DED process.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference43 articles.

1. Numerical simulation to study the effect of tack welds and root gap on welding deformations and residual stresses of a pipe-flange joint;International Journal of Pressure Vessels and Piping,2005

2. Experimental validation of numerical simulation on deformation behaviour induced by wire arc additive manufacturing with feedstock SS316L on substrate S235;The International Journal of Advanced Manufacturing Technology,2022

3. Comprehensive study on materials used in different types of additive manufacturing and their applications;International Journal of Mathematical, Engineering and Management Sciences,2022

4. Study on welding temperature distribution in thin welded plates through experimental measurements and finite element simulation;Journal of Materials Processing Technology,2011

5. A comparison of all hexagonal and all tetrahedral finite element meshes for elastic and elasto-plastic analysis;Proceedings, 4th International Meshing Roundtable,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3