A response surface methodology investigation into the optimization of manufacturing time and quality for FFF 3D printed PLA parts

Author:

Temiz Abdurrahim

Abstract

Purpose This study aims to examine the impact of specific printing factors, such as layer height, line width and build orientation, on the overall quality of fused filament fabrication (FFF) 3D printed structures. The project also intends to use response surface methodology (RSM) to maximize ultimate tensile strength (UTS) while lowering surface roughness and printing time. Design/methodology/approach This study used an FFF printer to fabricate samples of polylactic acid (PLA), which were then subjected to assessments of tensile strength and surface roughness. A tensile test was conducted under standardized conditions according to the ASTM D638 standard test method using the AG-50 kN Shimadzu Autograph. The Mitutoyo Surftest SJ-210, which utilizes a needle-tipped inductive method, was used to determine surface roughness. RSM was used for optimization. Findings This work provides useful insights into how the printing parameters affect FFF 3D printed structures, which may be used to optimize the printing process and improve PLA-based 3D printed products' qualities. The determined optimal values for building orientation, layer height and line width were 0°, 0.1 mm and 0.6 mm, respectively. The total desirability value of 0.80 implies desirable outcomes, and good agreement between experimental and projected response values supports the suggested models. Originality/value Previous RSM studies for 3D printing parameter optimization focused on mechanical properties or surface aspects, however, few examined multiple responses and their interactions. This study emphasizes the relevance of FFF parameters like line width, which are often overlooked but can dramatically impact printing quality. Mechanical properties, surface quality and printing time are integrated to comprehend optimization holistically.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3