Warpage control in thermoplastic ABS parts produced through material extrusion (MEX)-based fused deposition modeling (FDM)

Author:

Mittal Yash G.,Patil Yogesh,Kamble Pushkar Prakash,Gote Gopal Dnyanba,Mehta Avinash Kumar,Karunakaran K.P.

Abstract

Purpose Additive manufacturing (AM) is a layer-by-layer technique that helps to create physical objects from a three-dimensional data set. Fused deposition modeling is a widely used material extrusion (MEX)-based AM technique that melts thermoplastic filaments and selectively deposits them over a build platform. Despite its simplicity and affordability, it suffers from various printing defects, with partial warping being a prevalent issue. Warpage is a physical deformation caused by thermal strain incompatibility that results in the bending of the printed part away from the build platform. This study aims to investigate the warpage characteristics of printed parts based on geometrical parameters and build orientations to reduce the warpage extent. Design/methodology/approach Cuboidal samples of thermoplastic acrylonitrile butadiene styrene ranging from 5 to 80 mm were printed using a commercial MEX system. A Taguchi method-based design of experiment trial was performed to optimize the placement and orientation of the part for minimal warpage. Findings It was found that a lower value of the “in-plane” aspect ratio and a more prominent part thickness are favorable for minimal warpage. The part should always be placed near the region with the highest temperature (least thermal gradient) to minimize the warpage. Originality/value A novel dimensionless parameter (Y) is proposed that should be set to a minimum value to achieve minimal warpage. The results of this study can help improve the design and part placement for the MEX technique, thus elevating the print quality.

Publisher

Emerald

Reference49 articles.

1. Analysis of mechanical error in a fused deposition process using a stochastic approach,2007

2. Comparative study of the sensitivity of PLA, abs, peek, and Petg’s mechanical properties to FDM printing process parameters;Crystals,2021

3. Warping deformation of desktop 3D printed parts manufactured by open source fused deposition modeling (FDM) system;Int. J. Mech. Mechatron. Eng,2017

4. Analysis of dimensional quality in FDM printed nylon 6 parts;Progress in Additive Manufacturing,2023

5. Warpage of FDM parts: experimental tests and analytic model;Robotics and Computer-Integrated Manufacturing,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3