Particle properties for suspension plasma spray

Author:

Lijuan Qian,Chu Xianyu

Abstract

Purpose – The purpose of this paper is to use comprehensive model to investigate the effects of particle physical properties on in-flight nano-particles behavior for the radio frequency suspension plasma spray. Design/methodology/approach – In this paper, both the effects thermal properties of solvent and solid particle on the evolution of particle size, velocity and temperature are discussed. Besides, the numerical analysis is also conducted to investigate the influences of particle physical properties on the characteristic distributions of particles for poly-disperse cases. Findings – Results show the thermal properties of solvent have critical effects on the discharged point of the solid particles, but little influence on the final particle velocity and size, as well as their distributions. The final state of particle temperature is mainly determined by the solid particle thermal properties, especially depending on the boiling point. Originality/value – Most of the former studies took the experimental approaches and mainly focussed on the operating conditions effects. While beyond the operating conditions, the variety of particle physical and thermal properties also has strong effect on particle heating performance.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A New Spray Approach to Produce Uniform Ultrafine Coatings;Journal of Nanotechnology;2018-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3