Interaction of mixed convection with non-gray gas radiation in a partially heated horizontal pipe: entropy generation analysis

Author:

Mazgar Akram,Jarray Khouloud,Hajji Fadhila,Ben Nejma Fayçal

Abstract

Purpose This paper aims to numerically analyze the effect of non-gray gas radiation on mixed convection in a horizontal circular duct with isothermal partial heating from the sidewall. The influence of heater location on heat transfer, fluid flow and entropy generation is given and discussed in this study. Design/methodology/approach The numerical computation of heat transfer and fluid flow has been developed by the commercial finite element software COMSOL Multiphysics. Radiation code is developed based on the T10 Ray-Tracing method, and the radiative properties of the medium are computed based on the statistical narrow band correlated-k model. Findings The obtained results depicted that the radiation considerably contributes to the temperature homogenization of the gas. The findings highlight the impact of the heater location on swirling flow. It is also shown that the laterally heating process provides better energy efficiency than heating from the top of the enclosure. Originality/value This study is performed to improve heat transfer and to minimize entropy generation. Therefore, it is conceivable to improve the model design of industrial applications.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3