Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder-Mead method

Author:

Nawaz M.,Zeeshan A,Ellahi R,Abbasbandy S,Rashidi Saman

Abstract

Purpose – The purpose of this paper is to study the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of genetic algorithm (GA). The main emphasis is to find the analytical and numerical solutions for the said mathematical model. The work undertaken is a blend of numerical and analytical studies. Effects of active parameters such as: Hartmann number, Prandtl number, Eckert number, Nusselt number, Skin friction and dimensionless fluids parameters on the flow and heat transfer characteristics have been examined by graphs and tables. Compression is also made with the existing benchmark results. Design/methodology/approach – Analytical solutions of non-linear coupled equations are developed by optimal homotopy analysis method (OHAM). A very effective and higher order numerical scheme hybrid GA and Nelder-Mead optimization Algorithms are used for numerical investigations. Findings – An excellent agreement with the existing results in limiting sense is noted. It is observed that the radial velocity is an increasing function of dimensionless material parameters α 1, α 2 and β. Temperature increases by increasing the values of M, Pr, Ec and γ. Non-Newtonian parameter β has similar effects on skin friction coefficient and Nusselt number. The wall heat transfer rate is a decreasing function of A and ß whereas it increases by increasing conjugate parameter γ. Originality/value – The problem under consideration has been widely studied by many investigators due to its importance and engineering applications. But most of the studies as the authors have documented are for Newtonian or viscous fluids. But no such analysis is available in the literature which can describe the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of GA.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3