Author:
Biswal Pratibha,Basak Tanmay
Abstract
Purpose
This study aims to carry out the analysis of Rayleigh-Bénard convection within enclosures with curved isothermal walls, with the special implication on the heat flow visualization via the heatline approach.
Design/methodology/approach
The Galerkin finite element method has been used to obtain the numerical solutions in terms of the streamlines (ψ ), heatlines (Π), isotherms (θ), local and average Nusselt number (
Nut¯) for various Rayleigh numbers (103 ≤ Ra ≥ 105), Prandtl numbers (Pr = 0.015 and 7.2) and wall curvatures (concavity/convexity).
Findings
The presence of the larger fluid velocity within the curved cavities resulted in the larger heat transfer rates and thermal mixing compared to the square cavity. Case 3 (high concavity) exhibits the largest
Nut¯ at the low Ra for all Pr. At the high Ra,
Nut¯ is the largest for Case 3 (high concavity) at Pr = 0.015, whereas at Pr = 7.2,
Nut¯ is the largest for Case 1 (high concavity and convexity).
Practical implications
The results may be useful for the material processing applications.
Originality/value
The study of Rayleigh-Bénard convection in cavities with the curved isothermal walls is not carried out till date. The heatline approach is used for the heat flow visualization during Rayleigh-Benard convection within the curved walled enclosures for the first time. Also, the existence of the enhanced fluid and heat circulation cells within the curved walled cavities during Rayleigh-Benard heating is illustrated for the first time.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献