Abstract
PurposeThe aims of this study are to examine affective responses of university students when viewing their own predictive learning analytics (PLA) dashboards, and to analyse how those responses are perceived to affect their self-regulated learning behaviour.Design/methodology/approachA total of 42 Northern Irish students were shown their own predicted status of academic achievement on a dashboard. A list of emotions along with definitions was provided and the respondents were instructed to verbalise them during the experience. Post-hoc walk-through conversations with participants further clarified their responses. Content analysis methods were used to categorise response patterns.FindingsThere is a significant variation in ways students respond to the predictions: they were curious and motivated, comforted and sceptical, confused and fearful and not interested and doubting the accuracy of predictions. The authors show that not all PLA-triggered affective states motivate students to act in desirable and productive ways.Research limitations/implicationsThis small-scale exploratory study was conducted in one higher education institution with a relatively small sample of students in one discipline. In addition to the many different categories of students included in the study, specific efforts were made to include “at-risk” students. However, none responded. A larger sample from a multi-disciplinary background that includes those who are categorised as “at-risk” could further enhance the understanding.Practical implicationsThe authors provide mixed evidence for students' openness to learn from predictive learning analytics scores. The implications of our study are not straightforward, except to proceed with caution, valuing benefits while ensuring that students' emotional well-being is protected through a mindful implementation of PLA systems.Social implicationsUnderstanding students' affect responses contributes to the quality of student support in higher education institutions. In the current era on online learning and increasing adaptation to living and learning online, the findings allow for the development of appropriate strategies for implementing affect-aware predictive learning analytics (PLA) systems.Originality/valueThe current study is unique in its research context, and in its examination of immediate affective states experienced by students who viewed their predicted scores, based on their own dynamic learning data, in their home institution. It brings out the complexities involved in implementing student-facing PLA dashboards in higher education institutions.
Subject
Computer Science Applications,Education
Reference32 articles.
1. Natural affect data: collection and annotation,2011
2. Who, when, and why: a machine learning approach to prioritizing students at risk of not graduating high school on time,2015
3. Off-task behavior in the cognitive tutor classroom: when students ‘game the system’,2004
4. Towards predicting future transfer of learning,2011
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献