Predictive learning analytics and the creation of emotionally adaptive learning environments in higher education institutions: a study of students' affect responses

Author:

Joseph-Richard PaulORCID,Uhomoibhi James,Jaffrey Andrew

Abstract

PurposeThe aims of this study are to examine affective responses of university students when viewing their own predictive learning analytics (PLA) dashboards, and to analyse how those responses are perceived to affect their self-regulated learning behaviour.Design/methodology/approachA total of 42 Northern Irish students were shown their own predicted status of academic achievement on a dashboard. A list of emotions along with definitions was provided and the respondents were instructed to verbalise them during the experience. Post-hoc walk-through conversations with participants further clarified their responses. Content analysis methods were used to categorise response patterns.FindingsThere is a significant variation in ways students respond to the predictions: they were curious and motivated, comforted and sceptical, confused and fearful and not interested and doubting the accuracy of predictions. The authors show that not all PLA-triggered affective states motivate students to act in desirable and productive ways.Research limitations/implicationsThis small-scale exploratory study was conducted in one higher education institution with a relatively small sample of students in one discipline. In addition to the many different categories of students included in the study, specific efforts were made to include “at-risk” students. However, none responded. A larger sample from a multi-disciplinary background that includes those who are categorised as “at-risk” could further enhance the understanding.Practical implicationsThe authors provide mixed evidence for students' openness to learn from predictive learning analytics scores. The implications of our study are not straightforward, except to proceed with caution, valuing benefits while ensuring that students' emotional well-being is protected through a mindful implementation of PLA systems.Social implicationsUnderstanding students' affect responses contributes to the quality of student support in higher education institutions. In the current era on online learning and increasing adaptation to living and learning online, the findings allow for the development of appropriate strategies for implementing affect-aware predictive learning analytics (PLA) systems.Originality/valueThe current study is unique in its research context, and in its examination of immediate affective states experienced by students who viewed their predicted scores, based on their own dynamic learning data, in their home institution. It brings out the complexities involved in implementing student-facing PLA dashboards in higher education institutions.

Publisher

Emerald

Subject

Computer Science Applications,Education

Reference32 articles.

1. Natural affect data: collection and annotation,2011

2. Who, when, and why: a machine learning approach to prioritizing students at risk of not graduating high school on time,2015

3. Off-task behavior in the cognitive tutor classroom: when students ‘game the system’,2004

4. Towards predicting future transfer of learning,2011

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3