Selection framework of disruption analysis methods for megaprojects: an integrated fuzzy multi-criteria decision-making approach

Author:

Okudan OzanORCID,Cevikbas Murat,Işık Zeynep

Abstract

PurposeThe purpose of this paper is to propose a decision support framework that can be used by decision-makers to identify the most convenient disruption analysis (DA) methods for megaprojects and their stakeholders.Design/methodology/approachThe framework was initially developed by conducting a comprehensive literature review to obtain extensive knowledge about disruption management and megaprojects. Focus group discussion (FGD) sessions with the participation of the construction practitioners were then organized to validate and strengthen the findings of the literature review. Consequently, 17 selection factors were identified and categorized as requirement, ability and outcome. Lastly, the most convenient DA methods for megaprojects were identified by performing integrated fuzzy analytical hierarchy process (AHP) and fuzzy technique for order of preference by similarity to ideal solution (TOPSIS) analysis. Additionally, consistency analysis was also conducted to verify the reliability of the results.FindingsThe results revealed that the measured mile method is the most appropriate DA method for megaprojects. In case the measured mile method cannot be adopted due to various technical and contractual reasons, the decision-makers are proposed to consider program analysis, work or trade sampling, earned value analysis and control chart method, respectively. Second, the selection factors such as “Comprehensible analysis procedure,” “Existing knowledge and experience about a particular DA method,” “Ability to resolve greater number of disruption events,” “Ability to resolve complex disruption events,” “Ability to exclude factors that are not under the owner's responsibility” and “General acceptance by practitioners, courts, and arbitration, etc.” were given the top priority by the experts, highlighting the critical aspects of the DA methods.Originality/valueDisruption claims in megaprojects are very critical for the contractors to compensate for the losses stemming from disruption events. Although the effective use of DA methods maximizes the accuracy and reliability of disruption claims, decision-makers can barely implement these methods adequately since past studies neglect to present extensive knowledge about the most convenient DA methods for megaprojects. Thus, developing a decision support framework for the selection of DA methods, this study is the earliest attempt that examines the mechanisms and inherent differences of DA methods. Additionally, owing to the robustness and versatility of this research approach, the research approach could be replicated also for future studies focusing on other project-based industries since disruption is also a challenging issue for many other industries.

Publisher

Emerald

Subject

General Business, Management and Accounting,Building and Construction,Architecture,Civil and Structural Engineering

Reference84 articles.

1. Forensic schedule analysis;AACE;AACE International Recommended Practice No. 29R-03. Forensic,2011

2. Avoiding and mitigating delay and disruption claims conflict: role of precontract negotiation;Journal of Legal Affairs and Dispute Resolution in Engineering and Construction,2009

3. Avoiding and mitigating delay and disruption claims conflict: role of precontract negotiation;Journal of Legal Affairs and Dispute Resolution in Engineering and Construction,2009

4. System dynamics modeling approach to quantify change orders impact on labor productivity 1: principles and model development comparative study;International Journal of Construction Management,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Supply chain risk prioritization: a multi-criteria based Intuitionistic Fuzzy TOPSIS approach;International Journal of Quality & Reliability Management;2024-02-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3