Dynamic interlinkages between cryptocurrencies, NFTs, and DeFis and optimal portfolio investment strategies

Author:

Polat OnurORCID

Abstract

PurposeThis study aims to scrutinize time-varying return and volatility interlinkages among major cryptocurrencies, NFT tokens and DeFi assets between 1 July 2018 and 19 February 2023 and determine optimal portfolio allocations and hedging effectiveness under different portfolio construction techniques.Design/methodology/approachThis work examines time-varying return and volatility interlinkages among major cryptocurrencies, NFT tokens, and DeFi assets between 1 July 2018 and 19 February 2023. To this end, the time-varying parameter-vector autoregression (TVP-VAR)-based connectedness methodology of Antonakakiset al.(2020) This approach is an extended version of the Diebold–Yilmaz (DY) method (Diebold and Yılmaz, 2014) and has advantages over the original DY. First, unlike the DY, it is free of the selection of a particular window size. Second, it has robustness for the outliers. Furthermore, following Broadstocket al.(2022), the author estimates time-varying optimal portfolio weights and hedging effectiveness under different portfolio construction scenarios.FindingsThis study's results indicate the following results: (1) The overall connectedness indices prominently capture well-known financial/geopolitical distress incidents; (2) the leading cryptocurrencies (ETH, BTC and BNB) are the largest transmitter of return shocks, while LINK and BTC are the largest transmitters/recipients of volatility shocks; (3) cryptocurrencies, NFTs and DeFi form distinct cluster groups in terms of return and volatility connectedness; (4) the connectedness networks estimated around the 2022 cryptocurrency crash and the FTX's filing for the bankruptcy are characterized by the strongest return and volatility interlinkages; (5) optimal portfolio strategies computed by different portfolio construction techniques display similar motifs and have sustained growth paths except for some short-lived drop backs.Research limitations/implicationsThis study's findings imply several policy suggestions for investors, stakeholders and policymakers. First, the study's time-based dynamic interlinkages can help market participants in their optimal portfolio decisions. In particular, the persistent net receiving roles of the DeFi assets and the NFTs throughout the episode, especially around the financial/geopolitical turmoil, underpin their safe haven potentials (Umaret al., 2022a, b). Finally, since the total connectedness indices (TCIs) are prone to significantly increase around financial/geopolitical burst times, these tools can be valuable for policy makers to monitor risk.Originality/valueThe contribution of knowledge is at least threefold. First, the author focuses on the dynamic time interlinkages among major cryptocurrencies, NFTs and DeFi assets in July 2018 and February 2023 considering the prominent recent financial/geopolitical incidents. Second, the author estimates network topologies of dynamic connectedness around financial/geopolitical bursts and compared them in terms of interlinkages. Finally, the author calculates the time-varying optimal portfolio allocations and hedging effectiveness under different portfolio construction techniques.

Publisher

Emerald

Subject

Finance

Reference62 articles.

1. NFTs and asset class spillovers: lessons from the period around the COVID-19 pandemic;Finance Research Letters,2022

2. Refined measures of dynamic connectedness based on time-varying parameter vector autoregressions;Journal of Risk and Financial Management,2020

3. On the dynamic return and volatility connectedness of cryptocurrency, crude oil, clean energy, and stock markets: a time-varying analysis;Environmental Science and Pollution Research,2022

4. Some stylized facts of the Bitcoin market;Physica A: Statistical Mechanics and Its Applications,2017

5. A crypto safe haven against Bitcoin;Finance Research Letters,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3