Improving energy efficiency of HVAC systems in buildings: a review of best practices

Author:

Simpeh Eric KwameORCID,Pillay Jon-Patrick George,Ndihokubwayo RubenORCID,Nalumu Dorothy Julian

Abstract

PurposeHeating, ventilation and air-conditioning (HVAC) systems account for approximately half of all energy usage in the operational phase of a building's lifecycle. The disproportionate amount of energy usage in HVAC systems against other utilities within buildings has proved a huge cause for alarm, as this practice contributes significantly to global warming and climate change. This paper reviews the status and current trends of energy consumption associated with HVAC systems with the aim of interrogating energy efficiency practices for improving HVAC systems' consumption in buildings in the context of developing countries.Design/methodology/approachThe study relied predominantly on secondary data by analysing the relevant body of literature and proposing conceptual insights regarding best practices for improving the energy efficiency of HVAC systems in buildings. The systematic review of the literature (SLR) was aided by the PRISMA guiding principle. Content analysis technique was adopted to examine germane scholarly articles and finally grouped them into themes.FindingsBased on the SLR, measures for enhancing the energy efficiency of HVAC systems in buildings were classified based on economic considerations ranging from low-cost measures such as the cost of tuning the system, installing zonal control systems, adopting building integrated greenery systems and passive solar designs to major approaches such as HVAC smart technologies for energy management which have multi-year pay-back periods. Further, it was established that practices to improve energy efficiency in buildings range from integrated greening system into buildings to HVAC system which are human-centred and controlled to meet human modalities.Practical implicationsThere is a need to incorporate these energy efficiency practices into building regulations or codes so that built environment professionals would have a framework within which to design their buildings to be energy efficient. This energy efficient solution may serve as a prerequisite for newly constructed buildings.Originality/valueTo this end, the authors develop an integrated optimization conceptual framework mimicking energy efficiency options that may complement HVAC systems operations in buildings.

Publisher

Emerald

Subject

Building and Construction,Civil and Structural Engineering

Reference77 articles.

1. Assessment of energy efficiency of customer care buildings of telecommunications companies in selected towns in Nigeria;Built Environment,2020

2. Operation and energy efficiency of a hybrid air conditioner simultaneously connected to the grid and to photovoltaic panels,2014

3. Demand controlled ventilation indoor climate and energy performance in a high performance building with air flow rate controlled chilled beams;Energy and Buildings,2015

4. Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia;Renewable and Sustainable Energy Reviews,2016

5. Alternative Energy Africa News (2010), “Analysis offers insight to building management systems”, available at: www.ae-africa.com/read_article.php?NID=2037&PHPSESSID=b014def7eb758525de05f8d001-265dd3.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3