Sensitivity analysis of beam–column joint rotation angles with respect to the stiffnesses of the columns of frame structures

Author:

Li Lin

Abstract

Purpose Damage detection of frame structures is important for guaranteeing the safety of people’s lives and property. Sensitivity analysis is an effective method for damage identification. The purpose of this paper is to conduct a sensitivity analysis of beam–column joint rotation angles for frame structures with limited flexural stiffness beams. Design/methodology/approach First, based on the D-value method and the assumption of inflection points, statically indeterminate frames were transformed to statically determinate structures, and the expressions of beam–column joint rotation angles were derived. Next, the sensitivity coefficients of beam–column joint rotation angles were obtained by taking the derivative of the expressions of beam–column joint rotation angles with respect to the linear stiffness of column. Finally, the expressions of the sensitivity coefficients were verified by a numerical example. Findings The analytical solutions of the sensitivity coefficients are in good agreement with finite element results. The results show that the beam–column joint rotation angles of damaged column decrease and those of intact columns within the same story increase when damage occurs. Originality/value In this study, the sensitivity coefficients of beam–column joint rotation angles with respect to the linear stiffnesses of columns were derived for frame structures. Based on the result of the sensitivity analysis, the relationship between the changes of beam–column joint rotation angles and damaged columns is revealed. The findings provide an important base to further detect damage of frame structures.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent advances in reliability analysis of aeroengine rotor system: a review;International Journal of Structural Integrity;2021-12-21

2. Robust optimization of EMU brake module based on interval analysis;Multidiscipline Modeling in Materials and Structures;2021-10-05

3. FEA of reinforced concrete beam-column joint with steel fibers for cyclic loading;International Journal of Structural Integrity;2021-09-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3