Mesh sensitivity analysis on implicit and explicit method for rolling simulation

Author:

Gavalas EvangelosORCID,Pressas Ioannis,Papaefthymiou SpyrosORCID

Abstract

Purpose The purpose of this paper is to compare the performance of implicit and explicit integration schemes for simulating the metal rolling process using commercial software packages ANSYS™ and LS-DYNA™. Design/methodology/approach For the industrial application of finite element method, the time discretization is one of the most important factors that determine the stability and efficiency of the analysis. An iterative approach, which is unconditionally stable in linear analyses, is the obvious choice for a quasi-static problem such as metal rolling. However, this approach may be challenging in achieving convergence with non-linear material behavior and complicated contact conditions. Therefore, a non-iterative method is usually adopted, in order to achieve computational accuracy through very small time steps. Models using both methods were constructed and compared for computational efficiency. Findings The results indicate that the explicit method yields higher levels of efficiency compared to the implicit method as model complexity increases. Furthermore, the implicit method displayed instabilities and numerical difficulties in certain load conditions further disfavoring the solver’s performance. Originality/value Comparison of the implicit and explicit procedures for time stepping was applied in 3D finite element analysis of the plate rolling process in order to evaluate and quantify the computational efficiency.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3