AI technologies and their impact on supply chain resilience during COVID-19

Author:

Modgil SachinORCID,Gupta ShivamORCID,Stekelorum RébeccaORCID,Laguir IssamORCID

Abstract

PurposeCOVID-19 has pushed many supply chains to re-think and strengthen their resilience and how it can help organisations survive in difficult times. Considering the availability of data and the huge number of supply chains that had their weak links exposed during COVID-19, the objective of the study is to employ artificial intelligence to develop supply chain resilience to withstand extreme disruptions such as COVID-19.Design/methodology/approachWe adopted a qualitative approach for interviewing respondents using a semi-structured interview schedule through the lens of organisational information processing theory. A total of 31 respondents from the supply chain and information systems field shared their views on employing artificial intelligence (AI) for supply chain resilience during COVID-19. We used a process of open, axial and selective coding to extract interrelated themes and proposals that resulted in the establishment of our framework.FindingsAn AI-facilitated supply chain helps systematically develop resilience in its structure and network. Resilient supply chains in dynamic settings and during extreme disruption scenarios are capable of recognising (sensing risks, degree of localisation, failure modes and data trends), analysing (what-if scenarios, realistic customer demand, stress test simulation and constraints), reconfiguring (automation, re-alignment of a network, tracking effort, physical security threats and control) and activating (establishing operating rules, contingency management, managing demand volatility and mitigating supply chain shock) operations quickly.Research limitations/implicationsAs the present research was conducted through semi-structured qualitative interviews to understand the role of AI in supply chain resilience during COVID-19, the respondents may have an inclination towards a specific role of AI due to their limited exposure.Practical implicationsSupply chain managers can utilise data to embed the required degree of resilience in their supply chains by considering the proposed framework elements and phases.Originality/valueThe present research contributes a framework that presents a four-phased, structured and systematic platform considering the required information processing capabilities to recognise, analyse, reconfigure and activate phases to ensure supply chain resilience.

Publisher

Emerald

Subject

Management of Technology and Innovation,Transportation

Reference51 articles.

1. Accenture.com (2020), “Rapid response: a pragmatic approach to maintaining supply chain resilience in times of uncertainty”, available at: Accenture-COVID19-Maintaining-Supply-Chain-Resilience-in-Times-of-Uncertainty.pdf (accessed 20 April 2021).

2. Where is supply chain resilience research heading? A systematic and co-occurrence analysis;International Journal of Physical Distribution and Logistics Management,2019

3. How will country-based mitigation measures influence the course of the COVID-19 epidemic?;The Lancet,2020

4. A survey dataset to evaluate the changes in mobility and transportation due to COVID-19 travel restrictions in Australia, Brazil, China, Ghana, India, Iran, Italy, Norway, South Africa, United States;Data in Brief,2020

5. Supply chain risk management and artificial intelligence: state of the art and future research directions;International Journal of Production Research,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3