Abstract
PurposeWith the rise of social media platforms, an increasing number of cases of cyberbullying has reemerged. Every day, large number of people, especially teenagers, become the victim of cyber abuse. A cyberbullied person can have a long-lasting impact on his mind. Due to it, the victim may develop social anxiety, engage in self-harm, go into depression or in the extreme cases, it may lead to suicide. This paper aims to evaluate various techniques to automatically detect cyberbullying from tweets by using machine learning and deep learning approaches.Design/methodology/approachThe authors applied machine learning algorithms approach and after analyzing the experimental results, the authors postulated that deep learning algorithms perform better for the task. Word-embedding techniques were used for word representation for our model training. Pre-trained embedding GloVe was used to generate word embedding. Different versions of GloVe were used and their performance was compared. Bi-directional long short-term memory (BLSTM) was used for classification.FindingsThe dataset contains 35,787 labeled tweets. The GloVe840 word embedding technique along with BLSTM provided the best results on the dataset with an accuracy, precision and F1 measure of 92.60%, 96.60% and 94.20%, respectively.Research limitations/implicationsIf a word is not present in pre-trained embedding (GloVe), it may be given a random vector representation that may not correspond to the actual meaning of the word. It means that if a word is out of vocabulary (OOV) then it may not be represented suitably which can affect the detection of cyberbullying tweets. The problem may be rectified through the use of character level embedding of words.Practical implicationsThe findings of the work may inspire entrepreneurs to leverage the proposed approach to build deployable systems to detect cyberbullying in different contexts such as workplace, school, etc and may also draw the attention of lawmakers and policymakers to create systemic tools to tackle the ills of cyberbullying.Social implicationsCyberbullying, if effectively detected may save the victims from various psychological problems which, in turn, may lead society to a healthier and more productive life.Originality/valueThe proposed method produced results that outperform the state-of-the-art approaches in detecting cyberbullying from tweets. It uses a large dataset, created by intelligently merging two publicly available datasets. Further, a comprehensive evaluation of the proposed methodology has been presented.
Subject
Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献