Research on fatigue life prediction model for 2A70-T6 aluminum alloy at different strain ratios

Author:

Wei Yaobing,Li Yanan,Liu JianhuiORCID,Wang Gai,Guo Yanlei,Pan Xuemei

Abstract

PurposeIn practical engineering, oil filters often work under asymmetric cyclic loading. In order to improve the prediction accuracy of fatigue life of the oil filters under asymmetric cyclic loading, the effect of strain ratio and low cycle fatigue plastic deformation on fatigue life need to be considered. This paper aims to discuss the aforementioned objective.Design/methodology/approachFirst, strain-controlled fatigue tests with strain ratios of 0, 0.5 and −1 were carried out on the oil filter material 2A70-T6 aluminum alloy, and the test data were used to obtain strain fatigue life curves at three strain ratios. Then, based on the idea of the constant life curve method, the average value of the ratio of the strain amplitude corresponding to different strain ratios under the same partial life was defined as the strain ratio factor. Finally, the elastic-plastic factor was modified by the strain ratio factor, and a new fatigue life prediction model considering the effect of strain ratio was proposed.FindingsThe proposed model was validated, respectively, by fatigue test data of 2A70-T6 aluminum alloy, 2124-T851 aluminum alloy and oil filter and the results of the proposed model were compared with the Coffin–Manson equation, Morrow model and Smith–Watson–Topper (SWT) model, showing that the proposed model had higher applicability and accuracy.Originality/valueIn this work, a strain ratio factor is established based on the idea of the constant life curve method, and the strain ratio factor is used to modify the introduced elastic-plastic factor, and then a new fatigue life prediction model considering the influence of strain ratio and low cycle fatigue plastic deformation on material fatigue damage accumulation is proposed. The results show that the prediction results of the proposed model are in good agreement with the experimental data, and the proposed model has good fatigue life prediction ability considering the influence of strain ratio and lays a foundation for the fatigue life prediction of the oil filter.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference26 articles.

1. A study of the effects of cyclic thermal stresses on a ductile metal;Transactions of the American Society of Mechanical Engineers,1954

2. Low cycle fatigue test and enhanced lifetime estimation of high-strength steel S550 under different strain ratios;Marine Structures,2018

3. Study on the fatigue life and damage accumulation of a compressor blade based on a modified nonlinear damage model;Fatigue and Fracture of Engineering Materials and Structures,2018

4. Cyclic responses and microstructure sensitivity of Cr-based turbine steel under different strain ratios in low cycle fatigue regime;Materials and Design,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3