A coupled thermal-drop impact analysis-based safety assessment of radioactive material cask

Author:

Liu Qiang,Zhu Shun-Peng,Yu Zheng-Yong,Ding Ran

Abstract

Purpose Transport is an integral part of the nuclear fuel cycle. The procedures employed are designed and conducted to ensure the public and environment protection both routinely and when transport accidents occur. According to this, the purpose of this paper is to focus on a coupled thermal-drop impact analysis-based safety assessment of a nuclear fuel cask. Design/methodology/approach For the cask, high altitude falling and fire accidents are the two most serious accidents during its transportation. In this paper, a sequentially coupled thermal-drop impact analysis is performed by using a nuclear fuel cask model for safety assessment. High altitude falling and fire accidents of the nuclear fuel cask were conducted by using finite element simulations for coupled thermal-drop impact analysis. Findings Results showed that the cask can withstand a drop test and survive a fire of 800°C for 30 minutes. In addition, an improved design is explored and evaluated, which provides a reference for structural design and safety assessment of nuclear fuel casks. Originality/value A coupled thermal-drop impact analysis-based safety assessment procedure is developed for the nuclear fuel cask.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Reference14 articles.

1. Spent fuel transportation risk assessment: cask impact analyses;Packaging, Transport, Storage & Security of Radioactive Material,2013

2. An analysis of a spent fuel transportation cask under severe fire accident conditions,2002

3. Division 1-Subsection NB, Rules for Construction of Nuclear Facility Components, ASME Boiler & Pressure Vessel Code III;Class 1 Components,2013

4. Numerical fracture analysis for the structural design of CASTOR® casks,2003

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3