Optimal service resource management strategy for IoT-based health information system considering value co-creation of users

Author:

Fang JiORCID,Lee Vincent C.S.ORCID,Wang HaiyanORCID

Abstract

PurposeThis paper explores optimal service resource management strategy, a continuous challenge for health information service to enhance service performance, optimise service resource utilisation and deliver interactive health information service.Design/methodology/approachAn adaptive optimal service resource management strategy was developed considering a value co-creation model in health information service with a focus on collaborative and interactive with users. The deep reinforcement learning algorithm was embedded in the Internet of Things (IoT)-based health information service system (I-HISS) to allocate service resources by controlling service provision and service adaptation based on user engagement behaviour. The simulation experiments were conducted to evaluate the significance of the proposed algorithm under different user reactions to the health information service.FindingsThe results indicate that the proposed service resource management strategy, considering user co-creation in the service delivery, process improved both the service provider’s business revenue and users' individual benefits.Practical implicationsThe findings may facilitate the design and implementation of health information services that can achieve a high user service experience with low service operation costs.Originality/valueThis study is amongst the first to propose a service resource management model in I-HISS, considering the value co-creation of the user in the service-dominant logic. The novel artificial intelligence algorithm is developed using the deep reinforcement learning method to learn the adaptive service resource management strategy. The results emphasise user engagement in the health information service process.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3