Measuring book impact via content-level academic review mining

Author:

Zhou Qingqing,Zhang Chengzhi

Abstract

Purpose As for academic papers, the customary methods for assessing the impact of books are based on citations, which is straightforward but limited to the coverage of databases. Alternative metrics can be used to avoid such limitations, such as blog citations and library holdings. However, content-level information is generally ignored, thus overlooking users’ intentions. Meanwhile, abundant academic reviews express scholars’ opinions on books, which can be used to assess books’ impact via fine-grained review mining. Hence, this study aims to assess books’ use impacts by conducting content mining of academic reviews automatically and thereby confirmed the usefulness of academic reviews to libraries and readers. Design/methodology/approach Firstly, 61,933 academic reviews in Choice: Current Reviews for Academic Libraries were collected with three metadata metrics. Then, review contents were mined to obtain content metrics. Finally, to identify the reliability of academic reviews, Choice review metrics and other assessment metrics for use impact were compared and analysed. Findings The analysis results reveal that fine-grained mining of academic reviews can help users quickly understand multi-dimensional features of books, judge or predict the impacts of mass books, so as to provide references for different types of users (e.g. libraries and public readers) in book selection. Originality/value Book impact assessment via content mining can provide more detail information for massive users and cover shortcomings of traditional methods. It provides a new perspective and method for researches on use impact assessment. Moreover, this study’s proposed method might also be a means by which to measure other publications besides books.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications

Reference53 articles.

1. Can the impact of non-western academic books be measured? An investigation of Google books and Google scholar for Malaysia;Journal of the Association for Information Science and Technology,2014

2. Assessing the digital library research output: bibliometric analysis from 2002 to 2016;The Electronic Library,2018

3. Sentiment analysis using supervised classification algorithms,2017

4. Three options for citation tracking: Google scholar, Scopus and Web of Science;Biomedical Digital Libraries,2006

5. Citations to the 'introduction to informetrics' indexed by WOS, Scopus and Google Scholar;Scientometrics,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3