Fatigue strength assessment of ship structures accounting for a coating life and corrosion degradation

Author:

Garbatov Yordan

Abstract

Purpose Fatigue strength and reliability assessment of complex double hull oil tanker structures, based on different local structural finite element approaches, is performed accounting for the uncertainties originating from load, nominal stresses, hot spot stress calculations, weld quality estimations and misalignments and fatigue S-N parameters including the correlation between load cases and the coating life and corrosion degradation. Design/methodology/approach Ship hull wave-induced vertical and horizontal bending moments and pressure are considered in the analysis. Stress analyses are performed based on the nominal, local hot spot and notch stress approaches. A linear elastic finite element analysis is used to determine the stress distribution around the welded details and to estimate structural stresses of all critical locations. Fatigue damage is estimated by employing the Palmgren-Miner approach. The importance of the contribution of each random variable to the uncertainty of the fatigue limit state function is also estimated. The probability of fatigue damage of hot spots is evaluated taking into account random coating life and corrosion wastage. Fatigue reliability, during the service life, is modelled as a system of correlated events. Findings The fatigue analysis showed that the fatigue damage at the hotspot, located at the flange of the stiffener close to the cut-out, is always highest in the cases of the structural hot spot stress and effective notch stress approaches, except for the one of the nominal stress approach. The sensitivities of the fatigue limit state function with respect to changes in the random variables were demonstrated showing that the uncertainty in the fatigue stress estimation and fatigue damage are the most important. Fatigue reliability, modelled as a parallel system of structural hot spots and as a serial system of correlated events (load cases) was evaluated based on the Ditlevsen bounds. As a result of the performed analysis, reliability and Beta reliability indexes of lower and upper bounds were estimated, which are very similar to the ones adopted for ultimate strength collapse as reported in literature. Originality/value This paper develops a very complex fatigue strength and reliability assessment model for analysing a double hull oil tanker structure using different local structural finite element approaches accounting for the associated uncertainties and the correlation between load cases and the coating life and corrosion degradation. The developed model is flexible enough to be applied for analysing different structural failure modes.

Publisher

Emerald

Subject

Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bibliography;Corrosion and Corrosion Protection of Wind Power Structures in Marine Environments;2024

2. Parallel Bookkeeping Path of Accounting in Government Accounting System Based on Deep Neural Network;Journal of Electrical and Computer Engineering;2022-05-28

3. Probabilistic Analysis Approach of Uncertainties in Fatigue Life Simulations of an Oil Tanker Vessel;Transactions on Maritime Science;2022-04-20

4. Oil Tanker Simplified Fatigue Assessment with Inspection and Repair Approach and Parameters;Transactions on Maritime Science;2021-04-20

5. Review of Ultimate Strength Assessment of Ageing and Damaged Ship Structures;Journal of Marine Science and Application;2020-11-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3