Discovery of key function module in complex mechanical 3D CAD assembly model for design reuse

Author:

Han Zhoupeng,Tian Chenkai,Zhou Zihan,Yuan Qilong

Abstract

Purpose Complex mechanical 3D computer-aided design (CAD) model embodies rich implicit design knowledge. Through discovering the key function parts and key function module in 3D CAD assembly model in advance, it can promote the designers’ understanding and reuse efficiency of 3D assembly model in design reuse. Design/methodology/approach An approach for discovering key function module in complex mechanical 3D CAD assembly model is proposed. First, assembly network for 3D CAD assembly model is constructed, where the topology structure characteristics of 3D assembly model are analyzed based on complex network centrality. The degree centrality, closeness centrality, betweenness centrality and mutual information of node are used to evaluate the importance of the parts in 3D assembly model. Then, a multi-attribute decision model for part-node importance is established, and the comprehensive evaluation for key function parts in 3D assembly model is accomplished by combining Analytic Hierarchy Process and Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). Subsequently, a community discovery of function module in assembly model-based Clauset–Newman–Moore (CNM)-Centrality is given in details. Finally, 3D CAD assembly model of worm gear reducer is taken as an example to verify the effectiveness and feasibility of proposed method. Findings The key function part in CAD assembly model is evaluated comprehensively considering assembly topology more objectively. In addition, the key function module containing key function part is discovered from CAD assembly model by using CNM-Centrality-based community discovery. Practical implications The approach can be used for discovering important design knowledge from complex CAD assembly model when reusing the assembly model. It can help designers capture and understand the design thinking and intent, improve the reuse efficiency and quality. Originality/value The paper first proposes an approach for discovering key function module in complex mechanical 3D CAD assembly model taking advantage of complex network theory, where the key function part is evaluated using node centrality and TOPSIS, and the key function module is identified based on community discovery.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

Reference24 articles.

1. A state-of the-art survey of TOPSIS applications;Expert Systems with Applications,2012

2. Subassembly generation algorithm from a CAD model;The International Journal of Advanced Manufacturing Technology,2016

3. Finding community structure in very large networks;Physical Review E Stat Nonlin Soft Matter Phys,2004

4. A note on two problems in connexion with graphs;Numerische Mathematik,1959

5. Judgment scales and consistency measure in AHP;Procedia Economics and Finance,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3