A theoretical BIM-based framework for quantity take-off to facilitate progress payments: the case of high-rise building projects in Vietnam

Author:

Nguyen The-QuanORCID,Lou Eric C.W.ORCID,Nguyen Bao NgocORCID

Abstract

Purpose This paper aims to provide an integrated BIM-based approach for quantity take-off for progress payments in the context of high-rise buildings in Vietnam. It tries to find answers for the following questions: (1) When to start the QTO processes to facilitate the contract progress payments? (2) What information is required to measure the quantity of works to estimate contract progress payment (3) What are the challenges to manage (i.e. create, store, update and exploit)? What are the required information for this BIM use? and (4) How to process the information to deliver BIM-based QTO to facilitate contract progress payment? Design/methodology/approach The paper applied a deductive approach and expert consensus through a Delphi procedure to adapt to current innovation around BIM-based QTO. Starting with a literature review, it then discusses current practices in BIM-based QTO in general and high-rise building projects in particular. Challenges were compiled from the previous studies for references for BIM-based QTO to facilitate contract progress payment for high-rise building projects in Vietnam. A framework was developed considering a standard information management process throughout the construction lifecycle, when the BIM use of this study is delivered. The framework was validated with Delphi technique. Findings Four major challenges for BIM-based QTO discovered: new types of information required for the BIM model, changes and updates as projects progress, low interoperability between BIM model and estimation software, potentiality of low productivity and accuracy in data entry. Required information for QTO to facilitate progress payments in high-rise building projects include Object Geometric/Appearance Information, Structural Components' Definition and Contextual Information. Trade-offs between “Speed – Level of Detail–Applicable Breadth” and “Quality – Productivity” are proposed to consider the information amount to input at a time when creating/updating BIM objects. Interoperability check needed for creating, authoring/updating processing the BIM model's objects. Research limitations/implications This paper is not flawless. The first limitation lies in that the theoretical framework was established only based on desk research and small number of expert judgment. Further primary data collection would be needed to determine exactly how the framework underlies widespread practices. Secondly, this study only discussed the quantity take-off specifically for contract progress payment, but not for other purposes or broader BIM uses. Further research in this field would be of great help in developing a standard protocol for automatic quantity surveying system in Vietnam. Originality/value A new theoretical framework for BIM-based QTO validated with Delphi technique to facilitate progress payments for high-rise building projects, considering all information management stages and the phases of information development in the project lifecycle. The framework identified four types of information required for this QTO, detailed considerations for strategies (Library Objects Development, BIM Objects Information Declaration, BIM-based QTO) for better managing the information for this BIM use. Two trade-offs of “Speed – LOD–Applicable Breadth” and “Quality – Productivity” have been proposed for facilitating the strategies and also for enhancing the total efficiency and effectiveness of the QTO process.

Publisher

Emerald

Subject

Building and Construction,Civil and Structural Engineering

Reference72 articles.

1. BIM in off-site manufacturing for buildings;Journal of Building Engineering,2017

2. The conundrum of professionalising building surveying in Malaysia;International Journal of Building Pathology and Adaptation,2020

3. BIM perspectives on construction waste reduction,2012

4. Barriers to implementation of building information modeling (BIM) to the construction industry: a review;Journal of Civil Engineering and Construction,2018

5. Data-driven reverse engineering algorithm development method for developing interoperable quantity takeoff algorithms using IFC-based BIM;Journal of Computing in Civil Engineering,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Drivers of innovation towards sustainable construction: A study in a developing country;Journal of Building Engineering;2023-12

2. Scan-to-BIM technique in building maintenance projects: practicing quantity take-off;International Journal of Building Pathology and Adaptation;2022-09-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3