Author:
Memmolo Antonio,Bernardini Matteo,Pirozzoli Sergio
Abstract
Purpose
This paper aims to show results of numerical simulations of transonic flow around a supercritical airfoil at chord Reynolds number Rec = 3 × 106, with the aim of elucidating the mechanisms responsible for large-scale shock oscillations, namely, transonic buffet.
Design/methodology/approach
Unsteady Reynolds-averaged Navier–Stokes simulations and detached-eddy simulations provide a preliminary buffet map, while a high fidelity implicit large-eddy simulation with an upstream laminar boundary layer is used to ascertain the physical feasibility of the various buffet mechanisms. Numerical experiments with unsteady RANS highlight the role of waves travelling on pressure side in the buffet mechanism. Estimates of the propagation velocities of coherent disturbances and of acoustic waves are obtained, to check the validity of popular mechanisms based on acoustic feedback from the trailing edge.
Findings
Unsteady RANS numerical experiments demonstrate that the pressure side of the airfoil plays a marginal role in the buffet mechanism. Implicit LES data show that the only plausible self-sustaining mechanism involves waves scattered from the trailing edge and penetrating the sonic region from above the suction side shock. An interesting side result of this study is that buffet appears to be more intense in the case that the boundary layer state upstream of the shock is turbulent, rather than laminar.
Originality/value
The results of the study will be of interest to any researcher involved with transonic buffet.
Subject
Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献